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This is a closed book exam. Show all your work. Correct answers with insufficient
or incorrect work will not get any credit. Maximum possible score is 100. There
are six questions.
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1. Assume that a particular type of radio active material is in an environment that disinte-
grates at a rate, α, proportional to the material present. Find the time required for the
mass to reduce to one-half its size.

2. Using the method of characteristics find the solution u : R
2 → R such that

x
∂u

∂y
− y

∂u

∂x
= u on{x > 0, y > 0}

u(x, y) = g(x) on L{x > 0, y = 0}

3. Find the two linearly independent Frobenius series solutions to the ordinary differential
equation

2t
d2x

dt2
(t) + (3 − t)

dx

dt
(t) − x(t) = 0, t > 0.

4. Consider the ordinary differential equation

d2x

dt2
(t) + 4

dx

dt
(t) + 4x(t) = t−2e−2t, t > 1.

(a) Find the general solution.

(b) Find the solution x(·) such that x(1) = 0, dx

dt
(1) = −e−2.

5. (a) If p(r, α, θ), r < 1,−π ≤ φ < π,−π ≤ θ < π, is the Poisson Kernel in the unit disc
then show that ∫

π

−π

p(r, α, θ)dθ = 1.

(b) Find the solution to the Dirichlet Problem

∆u(r, θ) = 0 1 < r < 2,−π ≤ θ < π

u(1, θ) = 1 + cos2(θ) − π ≤ θ < π

u(2, θ) = 1 − cos2(θ) − π ≤ θ < π

Verify that the solution is indeed harmonic in the annulus.

6. Find the solution u : R+ × R → R, which is bounded in x and satisfies

∂u

∂t
=

∂2u

∂2x
+ 3t2, t > 0, x ∈ R

with u(0, x) = sin(x), x ∈ R.


